A Little Periodic Table History...

History of the Periodic Table

 Dmitri Mendeleev, a Russian scientist born in Siberia in 1834, is known as the father of the periodic table of the elements

 The periodic table is designed to help you predict chemical and physical properties of elements

Method Behind the Madness

- He noticed that by arranging them according to their properties they were arranged in order of increasing atomic mass
- Mendeleev was even able to use the patterns in his table to predict the properties of undiscovered elements
- The first periodic table was published in 1869

Mendeleev Song

The Genious of Mendeleev's Periodic Table - TedEd

Today, elements are arranged in order of increasing **atomic number on the periodic table**

Element Location

Elements are located in three main categories on the periodic table based on their **physical** properties

- ✓ Metals
- ✓ Nonmetals
- Metalloids

Physical Properties

Physical Property - a property of matter that can be observed or measured WITHOUT CHANGING the substance

Examples of Physical Properties

Mass – How much matter is in an object

Color/Texture

Malleable – Can be pounded/rolled into a shape

Density – How tightly mass is packed into an object

Ductile – Can be stretched into a long wire

Metals, Nonmetals, & Metalloids

Metals

Most elements are **metals**.

Physical Properties of Metals:

- high luster (shininess)
- ✓ good conductors of heat and electricity
- ✓ high density (heavy for their size)
- ✓ high melting point
- ✓ ductile
- ✓ malleable

Metals

Non-Metals

Non-metals are found to the **right** of the stair-step line. Their characteristics are **opposite** those of metals.

Physical Properties of Nonmetals:

- ✓ no luster (dull appearance)
- ✓ poor conductor of heat and electricity
- ✓ brittle (breaks easily)
- ✓ not ductile
- ✓ not malleable
- ✓ low density
- Iow melting point

Non-Metals

Metalloids

Metalloids have properties of both metals and nonmetals.

Physical Properties of Metalloids:

- ✓ solids
- \checkmark can be shiny or dull
- ✓ ductile
- ✓ malleable
- ✓ conduct heat and electricity, but not as well as metals

Metalloids

Scientists organize elements according to their physical and chemical properties

How to Read the Periodic Table

- The Periodic table is designed to help you predict what an element's physical and chemical properties are
- You can also predict what elements will **bond** with each other

Elements are arranged:

Vertically into **Groups** (als 12 called **Families**)

> Periodic Table Bitesize (only show part 1)

Horizontally Into Periods

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

Ca

Sr

Ba

Ra

38

56

88

Why?

If you looked at one atom of every element in a **group** you would see...

Each atom has the same number of **valence electrons** (the electrons in its outermost shell).

Group or family=each atom has the same number of electrons

The **group 2** atoms all have **2 electrons** in their outer shells

Valence Electrons

- Affect the way an atom bonds, which determines many of the chemical properties of the element
 - Atoms can have anywhere between 1 and 8 valence electrons
- This is why elements within a group usually have similar chemical properties

Chemical Properties

A chemical property is a characteristic that is observed when a substance changes into a **different** substance

Metals – Reactivity

The reactivity of metals *increases* from right to left. Increases from top to bottom.

Periodic Table of the Elements

More reactive (Fr most reactive

Th

232.4

Pa

231.4

U

238.0

Np

(237)

Pu

(240)

Am

(243)

Cm

(247)

 $\mathbf{B}\mathbf{k}$

(248)

Cf

(251)

Es

(252)

Fm

(257)

Md

(257)

No

(259)

Lr

(262)

	Less reactive
1 Lu	metals

Nonmetals – Reactivity

The reactivity of non-metals increases from left to right

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	141.0	144.2	(145)	150.4	153.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.4	231.4	238.0	(237)	(240)	(243)	(247)	(248)	(251)	(252)	(257)	(257)	(259)	(262)

If you looked at an atom from each element in a **period**

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Са	Sc	Ti		Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

you would see...

Each atom in a period has the same number of electron holding <u>shells.</u>

An example...

The **period 4** atoms each have **4 electron containing shells**

ſ	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Са	Sc	Ti		Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

Every element in a period has the same number of shells.

Each group has distinct properties

The periodic Table is divided into several groups based on the properties of different atoms

For example...

Periodic Table

- Information on the periodic table:
 - Atomic number
 - Atomic symbol
 - Mass number (Atomic Mass)
 - •Element name
 - •Group and period numbers