CHEMICAL REACTIONS & EQUATIONS

But First a Quick Review...

Elements

- Elements are pure substances
 - made of only one kind of material
 - has definite properties
 - is the same all throughout
 - They cannot be broken down into simpler substances without losing their identity
- Represented by a symbol (Au,Na)
- They're on the periodic table!

CO₂ carbon dioxide

Compounds

Made up of 2 or more different elements_that are chemically combined.

- They are represented by formulas
 - **Ex:** H_2O , NaCl, $C_6H_{12}O_6$, CO_2
- Compounds have different properties than their original elements
 - They cannot be separated by physical means
 - Unlike elements, compounds can only be broken down to simpler substances through a chemical reaction

- The properties of the elements that make up a compound are often quite different from the properties of the compound itself
 - Sodium Na = highly reactive metal
 - Chlorine Cl = poisonous gas

Sodium Chloride = NaCl (table salt)

$$N_{\alpha}^{\circ} + \cdot \overset{\circ}{C}_{\delta}^{\circ} = [N_{\alpha}]^{\dagger} [\overset{\circ}{C}_{\delta}^{\circ}]^{\dagger}$$

NaCl-Sodium Chloride (salt)

Mixtures

- Mixtures two or more substances that are physically combined and retain the properties of their substances
 - Mixture of elements brass (mixture of copper and zinc)
 - Mixture of elements and compounds air
 - Mixture of compounds sand, saltwater
 - Solution particles are evenly distributed

Types of Mixtures

- Homogeneous Entire mixture looks the same throughout
 - Ex. Milk, Bronze

- Heterogeneous Parts of the mixture look different
 - Ex. Fruit Salad, Trail Mix

Both types of mixtures can be separated by a physical change!

Element, Compound, or Mixture

Quick Check Element, Compound, or Mixture?

1. Platinum Pt

Element

Compound Mixture Mixture

Compound 5. Glucose $C_{e}H_{12}O_{e}$

Carbon Dioxide CO₂
Air O₂, N₂, and Ar
Brass Alloy of Cu and Zn

Molecules

A molecule is two or more atoms chemically bonded

Water - 2 atoms of hydrogen and one atom of oxygen (together they form one molecule of H₂O)

All compounds are molecules but not all molecules are compounds

- H₂ is a molecule, but not a compound
- H₂O is both a molecule and a compound (notice the 2 <u>different</u> elements)

Quick Check

Which substances are molecules and which substances are both molecules and compounds?

Molecule $1. O_2$ Both $2. CO_2$ Both $3. C_6H_{12}O_6$ Molecule $4. Cl_2$ Both $5. NH_3$

Chemical Formulas

- Chemical Formulas a shorthand way of representing compounds
 - If chemical symbols are the "letters," these are the "words."
 - **Ex:** NH_3 = ammonia, C_3H_7OH = rubbing alcohol
- Sometimes, the formula represents a molecule of a single element.
 - These are called diatomic molecules. This is how that element is naturally found.

O₂-Oxygen H₂-Hydrogen Cl₂-Chlorine

Let's Break it Down

Formula for Photosynthesis:

 $6CO_2 + 6H_2O + energy from sunlight \longrightarrow C_6H_{12}O_6 + 6O_2$

 $CO_2 = Carbon Dioxide$ $H_2 0 = Water$ $C_6 H_{12} O_6 = Glucose$ $O_2 = Oxygen$

Chemical Equations

A chemical equation is a symbolic representation of a chemical reaction

Equation Example:

The burning of methane gas in oxygen is:

$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Chemical Formulas - Subscripts

- Subscripts are small numbers used in chemical formulas
- Shows the elements & number of atoms of each element in a molecule

Element Totals:

Hydrogen; 2 atoms

Sulfur: 1 atom

Oxygen: 4 atoms

7 atoms total

Coefficients

- A formula may begin with a number
- If there is no number, then "1" is understood to be in front of the formula.
 - This number is called the coefficient
 - The coefficient represents the number of molecules of that compound or atom needed in the reaction

For example:

Coefficient $2H_2SO_4 - 2$ molecules of Sulfuric Acid

Coefficients

- 2H₂SO₄ this means 2 molecules of Sulfuric Acid
 - A coefficient is distributed to ALL elements in a compound
 - 2 H₂ (for a total of 4 H atoms)
 - 2S (for a total of **2** S atoms)
 - 2O₄ (for a total of 8 O atoms)

Reading Chemical Equations

- Each side of an equation represents a combination of chemicals
- The combination is written as a set of chemical formulas, separated by + symbols.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2C$$

Coefficient

The equation for the burning of methane gas in oxygen is:

Reading Chemical Equations

- The two sides of the equation are separated by an arrow
 - Reactants the combination of chemicals <u>before</u> the reaction are on the left side of the arrow
 - Products the right side indicates the combination of chemicals <u>after</u> the reaction

Language of Chemical Equations **Yields** $\rightarrow 2Na_{2}O_{1}$ 4Na + O_{2.} Reactants

- Arrow (yields)
- **Products**

Products Reactants

In this reaction, sodium (Na) and oxygen (O₂) react to produce a single molecule, Na,O

Language of Chemical Equations

