CHEMICAL REACTIONS \& EQUATIONS

But First a Quick Review...

Elements

- Elements are pure substances
- made of only one kind of material

- has definite properties
- is the same all throughout

They cannot be broken down into simpler substances without losing their identity

- Represented by a symbol (Au,Na)
- They're on the periodic table!

Compounds

- Made up of 2 or more different elements_that are chemically combined.
They are represented by formulas
- Ex: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{CO}_{2}$
- Compounds have different properties than their original elements
- They cannot be separated by physical means
- Unlike elements, compounds can only be broken down to simpler substances through a chemical reaction

Compounds

The properties of the elements that make up a compound are often quite different from the properties of the compound itself

- Sodium $-\mathrm{Na}=$ highly reactive metal
- Chlorine $-\mathrm{Cl}=$ poisonous gas

Sodium Chloride $=\mathrm{NaCl}$ (table salt)

$$
\begin{aligned}
& \mathrm{NaCl} \text { - Sodium Chloride (salt) }
\end{aligned}
$$

Mixtures

Mixtures - two or more substances that are physically combined and retain the properties of their substances

- Mixture of elements - brass (mixture of copper and zinc)
- Mixture of elements and compounds air
- Mixture of compounds - sand, saltwater
- Solution - particles are evenly distributed

Types of Mixtures

Homogeneous - Entire mixture looks the same throughout

- Ex. Milk, Bronze

Heterogeneous - Parts of the mixture look different

- Ex. Fruit Salad, Trail Mix

Both types of mixtures can be separated by a physical change!

Element, Compound, or Mixture

Quick Check

Element, Compound, or Mixture?

Element 1. Platinum Pt
Compound 2. Carbon Dioxide CO_{2}
Mixture 3. Air $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and Ar
Mixture 4. Brass Alloy of Cu and Zn
Compound 5. Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Quick Check

Which substances are molecules and which substances are both molecules and compounds?

Molecule 1. O_{2}
Both 2. CO_{2}
Both 3. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Molecule 4. Cl_{2}
Both 5. NH_{3}

Chemical Formulas

Chemical Formulas - a shorthand way of representing compounds

- If chemical symbols are the "letters," these are the "words."
- Ex: $\mathrm{NH}_{3}=$ ammonia, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}=$ rubbing alcohol Sometimes, the formula represents a molecule of a single element.
- These are called diatomic molecules. This is how that element is naturally found.
- O_{2}-Oxygen H_{2}-Hydrogen Cl_{2}-Chlorine

Let's Break it Down

Formula for Photosynthesis:
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ + energy from sunlight $\rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
$\mathrm{CO}_{2}=$ Carbon Dioxide
$\mathrm{H}_{2} \mathrm{O}=$ Water
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=$ Glucose
$\mathrm{O}_{2}=$ Oxygen

Chemical Equations

A chemical equation is a symbolic representation of a chemical reaction

Equation Example:

The burning of methane gas in oxygen is:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Chemical Formulas - Subscripts

Subscripts are small numbers used in chemical formulas

Shows the elements \& number of atoms of each element in a molecule

Element Totals:
Hydrogen; 2 atoms
Sulfur: 1 atom
Oxygen: 4 atoms
7 atoms total

Coefficients

- A formula may begin with a number If there is no number, then " 1 " is understood to be in front of the formula.
- This number is called the coefficient
- The coefficient represents the number of molecules of that compound or atom needed in the reaction
- For example:

Coefficients

$2 \mathrm{H}_{2} \mathrm{SO}_{4}$ - this means 2 molecules of Sulfuric Acid

- A coefficient is distributed to ALL elements in a compound
- $2 \mathrm{H}_{2}$ (for a total of 4 H atoms)
- 2 S (for a total of 2 S atoms)
- $2 \mathrm{O}_{4}$ (for a total of 8 O atoms)

Reading Chemical Equations

Each side of an equation represents a combination of chemicals

The combination is written as a set of chemical formulas, separated by + symbols.

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Coefficient

The equation for the burning of methane gas in oxygen is:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Subscript
Shows \# of atoms

Coefficient
Shows \# of molecules

Reading Chemical Equations

The two sides of the equation are separated by an arrow

- Reactants - the combination of chemicals before the reaction are on the left side of the arrow
- Products - the right side indicates the combination of chemicals after the reaction

Language of Chemical Equations

Reactants
Arrow
(yields)
Products

Reactants Products

- In this reaction, sodium (Na) and oxygen $\left(\mathbf{O}_{2}\right)$ react to produce a single molecule, $\mathrm{Na}_{2} \mathrm{O}$

Language of Chemical Equations

